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Abstract. We combine statistical mechanical and algebraic Lie theory techniques to investigate
the ordinary representation theory of the quotieﬁ){%(q) of the Hecke algebra#, (¢) wheng
is a root of unity. We show how to determine the main invariants of these algebras (the standard
module contents of the indecomposable projective modules) in geNerale give complete
explicit results in the casel = 2, 3.

These results are used to determinegheariation energy level convergenceslip(sl(N))
invariant quantum spin chains.

1. Introduction

The generically irreducible (‘standard’) representations of the Hecke aldglgga [50] have

well defined multiplicities as composition factors in the quantum spin-chain representation
V2" for any g. These multiplicities are given by the dimensions of certain irreducible
representations, Weyl modules, of the classical enveloping aldébia,) [12,31]. Thus,

in particular, these multiplicities are independentzofThis is a well known consequence

of Schur—Weyl duality [61] and character properties of the standard representations. The
connection between the reducibility of these standard representatiaiis(@f at roots of

unity and increased Hamiltonian spectrum degeneracy (i.e. energy level convergence) of
U, (sly) invariant spin chains [54] is in turn a direct consequence of this result. It has not
previously been possible to compute the increased degeneracies systematically, or to say
which sectors of the spectrum are converging to produce them. Furthermore, it has not
generally been possible to say which degeneracies observed on a given finite size chain
would survive to the thermodynamic limit. Some specific data has been available for small
n (see [36, 50, 21] and references therein). Lasatad [40, 7] produced an elegant scheme

for obtaining the general data in principle, but requiring large amounts of computation in
practice. In this paper we show how to compute the complete answer for ang N in

a relatively straightforward construction merging technology from statistical mechanics and
modular representation theory (leaning heavily, in particular, on the results of Soergel [58],
Lusztig [43], Jantzen [34] and Donkin [28]). We explain this technology in terms familiar

in physics—specifically, Young's representation theory of the symmetric group [61, 31].
Our results give the true irreducible content of the generically irreducible modules, and
dually give the §-deformation of classical) Weyl module content of the indecomposable
components o¥/?" as aU,(sly) module These indecomposable ‘tilting’ modules [28] are
larger at roots of unity than in the classical case, and since the dimensions of classical Weyl
modules are well known we can compute the larger dimensions of the tilting modules (i.e.
the multiplicities of irreducibles V2" on the Hecke side) if we know their Weyl content.

0305-4470/98/5010131+24$19.500) 1998 IOP Publishing Ltd 10131
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The U, (slyjm)-Symmetricn-site quantum spin-chain Hamiltonian [56, 54, 19] is

n—1
HYM =N RYM @)
j=1
where
—1 —1 M+N
N,M_q+q ab ba q+q aa raa
R =— _{;EJ Efpit— X;GHEJ Eja
-1
q9—4q a—b bb
E%“E" .
i ;m—m i f“}

Here EJ‘."b denotes the(a, b)th elementary matrix acting on thg¢th tensor factor of
(CNHMY®" ande; =€) = -+ = €y = —€x41 = —€nq2 = -+ = —eyyy = 1. The
main problem is to determine the large limit Hamiltonian eigenvalue spectrum, the
mass gap (as in [41]), and the spectrum degeneracies [52]. Several cases for the pair
of integers(V, M) are known to be physically significant. For examg,0) is the spin%
Heisenberg chain(l, 1) is thought to model metal surface absorption properties [8Z]1)
is relevant for understanding Andersom's/ model [5, 10, 30]. The same matrices appear
in a certain class of asymmetric diffusion problems now thought to model aspects of traffic
flow, interface growth, the dynamics of shocks and various other interesting phenomena
(see [29, 3] and references therein). Closely related models are also relevant for a wide
variety of many-body cooperative effects, such as critical phenomena, for computation in
QCD, areas of quantum chemistry [55], nuclear physics [59], and string/conformal field
theory [39, 46, 60]. These spin-chain models are also integrable, i.e. amenable, at least in
principle, to the Bethe ansatz [1, 2], the construction of Yang—Baxter equations, and other
methods of exact solution. Such models have naturally been the subject of intense study
worldwide for several years [11, 24, 44,18, 16].

Through the appearance of the Yang—Baxter equations we may extract a representation
of a quotient of H,(¢) from each model. The algebr#,(q) is given by generators
U;(1 < j < n) and relations

UiU; = (q +q U
UiUit1U; — U; = Ui+1U;Uj11 — Uiz (2
UiUiyj = Uiy U; J#D

and the model representation is definedlfhy— RjN”". We denote byH N (¢) the image
of H,(¢g) under this representation. It is the representation theof 6t (¢) which controls
the Hamiltonian spectrum degeneracies in each case [51]. Relatively little is known of the
general case a a root of unity, but certain simplifications occur in the cagg%(q),
written HN(¢), and it is this case we study here. (However, the general case remains an
important problem, and our approach stays, as far as possible, with techniques applicable
to the general case.)

The invariance situation fo’d = 0 is summarized by the followingg-Schur—
Wey! duality diagram’, in which the action of the algebras shown on the left/{f
commutes with the action of those shown on the right (the full lines are surjective algebra
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homomorphisms):

H,(q)  Upsly

HY(q)” = S,(n, N) A3)

Here H" (q) = Enct,q(s,N)(V,f?”) [47] is the quotient ofH, (¢) which acts faithfully onvg",
andS,(n, N) is theg-Schur algebra[20], the quotient of the;-group which acts faithfully
on V.

We do not concern ourselves here with the characterization oUifie/y) invariant
spin-chain spectrum by momentum (cf [54, 1]), or with the numerical values of Hamiltonian
eigenvalues. Thus, in terms of the concrete applications discussed above, this work is far
from the end of the story (cf [41,52]). However, we are able, efficiently and elegantly, to
encode a significant amount of useful level crossing data. In ordexttact this data we
must apply some fairly technical mathematics. The good news is that, once extracted, the
data may bepresentedn a simple way, as we will see. The technical effort is worthwhile,
since this datamust be controlled before the spin-chain spectra can be analysed in a
physically useful way (cf [17,51]). The computations for the results we present also have
the interesting appearance of crystal growth in various dimensions, which itself may prove
useful in asymmetric diffusion problems (cf [29]; this aspect will be discussed elsewhere).

For ¢ a primitive Ith root of unity (care is needed ifis not an odd prime greater
than N) the representation theory @f,(g) is greatly altered from the classical or generic
situation, in whichH,(¢) = CS,, the symmetric group algebra, aid (siy) = U(sly).
However, the index set for labelling isomorphism classes of irreducible representations is
basically unchanged. We wish to import some standard results from algebraic Lie theory, so
we begin in section 2 by recalling the relevant features of the classical index set in weight
lattice formalism.

In sections 3 and 4 we motivate the introduction of some modern algebraic Lie theory
technology, and illustrate the nature and physical interpretation of our results by giving the
N = 2,3 cases in some detail. Specifically, for each indecomposable projective n@dule
and standard modula), we give D;,,, the number of timeg\) appears as a composition
factor in P;. We show how all the other multiplicities we have discussed may be computed
from these. By adopting notions @fuasi-heredity[14, 26] andtilting modules[28] we
can reduce the computation of Hamiltonian degeneracies to a simply stated (although richly
structured) algorithmic procedure. In section 5 we explain this procedure in general.

In this paper we use the definitions in [50] on the Hecke algebra side, and those of
Chari and Pressley [13] on thggroup side, with some minor additions mentioned in the
next section.

2. Index sets for irreducible representations
The theory behind root systems and weight lattices for Lie algebras, and its connection with

the representation theory @Sy and other Coxeter groups, is well documented, e.g. in
O’Raifeartaigh [53]. We only review here the components we use most intensively.
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K
L7 n-horizon

Figure 1. Sketch of the root/weight space fdr (i.e. R3 viewed from thee direction—note
that in this casav; ~ e1, w2 ~ e1 + e2). The dots are the dominant weights. Tiénorizon

is shown for the case = 4. For example, the three weights on the 4-horizon are, from left
to right, 2 = (0, 2), (2, 1), (4, 0), giving integer partitiong2, 2), (3, 1), (4) respectively, while

A = (1, 0) corresponds at = 4 to partition(1) + (1,1,1) = (2,1, 1).

2.1. The lattice of weights and the Weyl groups

Fix N and letV = Vy = R", with {¢;|i = 1,2,..., N} an orthonormal bias with respect
to the standard inner produ¢t). Puteg = % Zf.vzl ¢;. Recall thats/y is associated

to the Ay_1 Coxeter system [33] which involves Weyl groups of reflections of the space
V which fix the lineReg or equivalently the hyperplane ®" perpendicular ta,. The

primitive or simple roots (in Okubo formalism) afé = {&; = ¢; —¢;11li = 1,..., N —1},
the highest root isx = e; — ey, the roots ared = {e; — ¢;li # j}, positive roots
ot = {¢; — ¢jli < j}, and the primitive (or fundamental dominant) weights are

{wj=Y1_1(ei—elj=12,...,N—1}.

In this framework the Weyl group¥ = Sy acts by permuting; — e, (hence it
is the copy ofSy generated by the reflections reflecting primitive roads:: ¢; — +e;).
The weight lattice Xis theZ-span of the primitive weights. It will suffice for our present
purposes to illustrate this with the picture fég (figure 1). Note that the shaded ‘dominant’
region in the figure is a fundamental domain for the Weyl group action.

The weight latticeX is preserved by the Weyl group action, and the intersectiorof
X with the shaded fundamental domain is thus a set of representative elements from each of
the Weyl group orbits off. Thus X™ indexes possible highest weights, and hence simple
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modules ofU (siy).
Note thath € Xt is of the form

N-1
A= Z)L,-a),- )\.i (S N()
i=1

so that dominant weights may be regarded as integer partitions via
A A+ + - Ay, Ao+ - Ano1, oo, Av—).

Forn € N we define then-horizon as the hyperplang’; ix; = n, and X" as the set of
dominant weights below and on tlehorizon whose degree is congruentitonodulo N.
The usual index set for the simple modules@S,,, is the set of integer partitions [61] of
degreen. For the quotient in the classical Schur—Weyl duality

0+ CS,Y%S, — CS, — Endy,,(V®") — 0 (4)

(a short exact sequence wmj; the level N Young symmetrizer [31, 61]) the corresponding
index set is the set of integer partitions of degreand up toN parts. This set is obtained
from the setX” by adding to each weight a multiple of thé-vector(1,1,1,...,1) such
that the resulting degreeiis(see figure 1 for an example). We shall not distinguish between
X" and its image under this map hereafter.

We partially orderX by u > A if u — A can be expressed as a linear combination
of simple roots with positive coefficients (note that tdisminance ordercoincides, where
applicable, with the usual order on partitionsmf

2.2. The l-affine Weyl group

Recall that there is an affine Weyl group action Brdefined as follows (again we precis
Humphreys [33], but take advantage of certain simplifications inAke; case). Forx a
root, k € Z, define the affine hyperplane

Hei = (b€ VI + p, @) = k) (,):% Z“>

acdt

and hence an affine reflection
S kX)) =A = (A +p, o) — k)a.

(Note that in this p-shifted’ set-up thé = O reflections generate a copy Bf which fixes
the point—p rather than 0.) fof € N put

7{1=={fLLH|a E‘D+,k (S Z}.
Fixing I € N the [-affine Weyl group may be realized as
Wl = (sa,kl|0( € CD+,/€ € Z>

Define A as the set of ‘alcoves’ of —the set of the connected componentdafUy cw H.
In particular, the ‘fundamental’ alcove is

A=(LeVI0<(A+p,a)<IVaed)}
with bounding hyperplane@H, o, o € 1} U {H;}. A set of generators oW, is
Sy = {s4,0, ¢ € TT} U {s5,}.

Note thatW; permutes the sed. This characterization of theaffine Weyl group greatly
facilitates a description of the representation theory/pfsiy) and H (¢) atg anith root
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Figure 2. Sketch indicating the fundamental alco#® and the dominant region for the Coxeter
systemAs after p shifting in the casé = 4. The large dot ig0, 0, 0), the uniqgue dominant
weight in the interior of the fundamental alcove in this case. The small dots are the fundamental
dominant weightso; = (1,0, 0), w2 = (1, 1, 0), w3 = (1, 1, 1)—the dominant weights on the

first affine hyperplane in this case.

of unity, as we shall see. From now on by the affine Weyl group we meahdfime Weyl
group.

Note that each connected componentVof Uy <y, H is a fundamental domain of the
(p-shifted) ordinary Weyl group action. Th#ominant regionof V is now defined as the
fundamental domain which contains the fundamental alctfieWrite A* c A for the set
of alcoves in the dominant region.

For example considefs; at/ = 4. Here

XﬂAoz{Zaia)im[ eZ,0<(x+p,a)<4Vaecb+}

SO (ay, az, az) satisfies—1 < a; < 3 and—3 < (3_; a;) < 1 giving (a1, az, as) = (0,0, 0)
as the only element. A sketch indicating the closuret®in this case appears in figure 2—
from which it can be seen th&0, 0, 0) is indeed the only interior lattice point.

The hyperplanes may be thought of as making an (undirected) simplicial compléx of
with the alcoves the codimension 0 open simplices. The general open simplices are called
facets. WriteA; for the set of codimension facets. Thus4y = A and A; is the set of
alcove ‘walls’, each a connected componentMX Ux ey H for some hyperpland/.
For . € X we write F; for the unique facet containing. We write Sti) for the group
{w € W)|w - > = A}. For any facetF let F denote its closure. ThusO is a fundamental
domain for the action of the affine Weyl group. We git= A°N X.

We define a length function on the dominant regionvoby

len(x) = # hyperplanes betweenand Q
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Figure 3. Walls and alcoves in the dominant region 4§ in the casd = 4. Writing {s, ¢, u}

for S; as indicated (e.gs is a reflection inH; 4) we have marked the lengths of the alcoves
on a Bruhat increasing path with=8 len(A%); 1 = len(sA%); 2 = len(stA%); 3 = len(stuA°);

4 = len(stut A®); 5 = len(sruts A®); and 6= len(sturst A9).

Note that this function is well defined on the set of alcoviesNote also that in the case

[ = 1 this length ordersx™ by the dominance order. We define a ‘Bruhat’ order.érby

A > B if we can get fromB to A by successive reflections which at each stage increase in
length by 1. An example is shown in figure 3.

Note that anyA € A can be expressed asA® for somew € W;. We hence define a
‘right action’ of the generatorS; of W; on A by As = ws A°. For example, consider figure 3
again. Note thatAs is the reflection ofA in the unique wall ofA (i.e. in the hyperplane
touching A) which is in the(/)-affine Weyl orbit of the hyperplane correspondingsto

Put
ws(A) = (As N A) N ( U S)

SE.A1

and letA] be the set of alcove walls in the dominant region. Partitignby the W, action
(i.e. into N + 1 parts) and writes] for the class of walk.

Note that there is a natural 1 : 1 correspondence betw&erand the subset afd*
consisting of translations of°.

3. Representation theory preliminaries

3.1. Canonical representation types and invariants

For A an algebraM € A-mod (i.e. an element of the category of finite-dimensional left
A-module) andS a set of inequivalentAi-modules we put € F(S), and sayM has an
S-filtration, if M, may be filtered by a finite series of submodules

M=MyDM1D--DM,:1=0
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such that for alli = O,...,m the ith sectionM;/M;.1 = N; € S. If |{i|[N; = N}|

is independent of the choice of series for Ml N we write (M : N)s for this filtration
multiplicity (cf [50, equation (1.15)]). For example, Itbe a complete set of (isomorphism
classes of) simple modules a@f. Then everyM is in F(£) and we write(M : N), as
[M : N]. Note that in eaclsimple seriesM; is a maximal proper submodule 8. The
intersection of all maximal proper submodulesMfis RadM, and Head = M/ RadM

is semisimple. Thus

M = My > RadM > RadRadV O - --

is a finite series foM with semisimple sections.

Let A be an index set fo£. The smallest module with head, € £ is obviouslyL;
itself. There is also a unique largest with this property—ghgective module denoted;.
We define a relation~ on A by A ~ p if [P, : L,] # 0. The extension of this relation to
an equivalence relation partitionsinto blocks

Hereafter we will writeL,, P, for the simple and projective module 6f (n, N) with
index € X", andL}, P; for those ofH (¢). For us, the crucial invariant of either algebra
is its Cartan matrix C,,, := [P : L,].

For certain algebras (including quasi-hereditary algebras sush(asN) and H (¢))
we also have an intermediate get(resp.A’) of standardmodules. A construction for the
HN (g) standard modules was given in [50], and we give a definition in the appendix, but
roughly speaking the standard modulg lies betweenl, and P, in size, again with head
L,. These modules are such that the dag : A;)., and similarly

Dy = (Pt A))ar (5)
are well defined, and such (in the cases we consider) that the (#ata A,), are
in ‘reciprocity’ with (i.e. numerically coincident with) the data\[ : L,] [28]. Thus
introducing standard modules ‘halves’ the difficulty of the calculatio@gf. For example,
in the H,Y(¢) case we have,, = )" D;,D,, = (DD');,. We will give examples in
section 3.6. The tilting moduleg,, 7, (the largest indecomposable summand#/{f) are
for us a computational convenience essentially similar to the projectives.

Note that from our introductior(V &", Al)a = dim(A;), so the spectrum multiplicities
of Hamiltonian 1" are regulated byD,,, for H¥ (¢) via

[V§": L] =) dim(A;) D,
A

We give a technical summary of quasi-heredity in appendix A. There we define certain
sets of canonical indecomposable modulesHgf(¢) and Sy(n, N) as outlined in the table
below, each with the same index géte X"}. The table is here to provide the physically
motivated reader with the option gkipping appendix A.

We have

(To: V) = (P 1 A) = (V) I L}) (6)
where the last equality is Brauer—Humphries reciprocity [28].
Fix I as before and pw/ = U,(sly). Let A € C and defineM, as the category of

finite-dimensionall/-modulesM such that(M : L,), # 0 only if u € W, - A. By the
linkage principle[34] every M € U-mod is uniquely expressible as
M= (7)
reC

with M* € M,. By the duality of table 1 (see also equation (33)) an exactly corresponding
decomposition applies t&/" (¢)-modules. In particular the composition matricesblock
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Table 1. This table indicates how the canonical modules’-]q“f(q) andsS,(n, N) are related by
the functors ofg-Schur—-Weyl/Ringel duality [22, 28] (denotdd F’, and defined explicitly in
appendix A; see equation (33)).

R
HY(g) YR
Simple modules: L Ly
Standards: Al Ay
e
Costandards: VA Va
Indecomp. Tilting: T} 75
—
Indec. Projectives: Py Py

diagonalize, with blocksD (1) labelled byA € C and containing the rows and columns
indexed by dominant weights in th#&; orbit of . For large enouglx we will see that,
amongst those € A% D(1) does not actually depend an Indeed, we havé® (1) = D(u)
if F=F,.

In these terms we may now give a preview of results for

3.2. Preview of results

We will take the example&v = 3. Here it is possible to represent the wholelxfr), for A
on a particular type of facet, by a single picture. Roe A° we have figure 4, and fox
on any wall we have figure 5 (eveiyon theintersectionof walls gives a singleton block
in this case, so with these we are done).

Consider ther e A° picture. Starting with theA? alcove diagram (the full lines in
figure 3) we draw in each alcoveA° a shape indicating the location of the non-zero
multiplicities (P,, : A’ ,) (in this case all multiplicities are either 0 or 1). The shape, or
‘pattern’, is simply another picture of the relevant part of the alcove diagram itself, scaled
down to fit into the defining alcoveyA®, with alcovew’A° shaded if(P/, : A/,,) = 1.

We see that the typical arrangement is either a star or hexagon of alcoves. In every pattern
the unique (Bruhat) highest among these shaded alcovesfsitself. In figure 5 the
patterns are, correspondingly, of walls, and the pattern associated to each wall has been
drawn adjacentto that wall. For example, the pattern associated tosthell of stuA°

(i.e. the wall betweenruA° andsrusA°; see also figure 3) shades that wall and also the
s-wall of A itself, but no others.

The proof of these results will be given shortly.
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AR

VA
L
\V/
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‘ AN/
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Figure 4. Schematic determining (1) for 1 € A® in the caseV = 3 (i.e. A?). Patterns higher

up the dominant region than shown follow the established pattern. For example, the pattern for
every downward pointing alcove not touching the outside edge of the diagram is a hexagon.
The numbers in the key set of patterns on the right will be explained later.

h

Figure 5. Schematic determining> (1) for eachi on a wall, i.e. wall patterns, foN = 3.
Patterns not given in the figure (on the right in the alcove diagram) are obtained by left/right
mirror symmetry. Patterns higher up the diagram than shown follow the established pattern.
The key set of patterns on the right will be explained later.
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3.3. Interpretation of results

A striking feature of theN = 3 results is that there are ‘generic section patterns’, each
with only a small number of sections, close to the defining (top) section. By our general
arguments the limit of the multiplicity of the simple modulg in V¢" asn — oo (and
hence the multiplicity of each corresponding thermodynamic limit Hamiltonian eigenvalue)
is given by

dim(Ty) = Z D;, dim(A,).
"

Our result shows that the sum is finite (and of course(dip) is always finite), so the
corresponding multiplicities are all finite. Of course this is also true in the dase 2,

but there is no reason why it should be true in general. Indeed it can be shown by these
methods that some multiplicities in th€ = 4 case are infinite (i.e. there are arbitrarily
complicated section patterns—uwith no limit on the number of sections involved—we will
discuss this further elsewhere). Note that the situationfarM) = (2, 1) is not yet clear,

but is obviously of interest, in the light of our introductory discussion.

Note that it is an elementary exercise to verify from our results and equation (6) the
cases of Y, : L,] worked out by Doty and Sullivan [23].

It is also useful to consider the data in the form of, [: L] (i.e. D'). This tells us
which eigenvalues of th&/ = 0 Hamiltonian have level crossings with eigenvalues from
the sector of the spectrum labelled hy asg varies through théth root of unity. For
example, in [50, p 5493] some specific explicit calculations determined the simple content
of the n = 8 Specht modules®3? in the case = 4. We verify this as follows. First
(4,3,1) goes to(3,2) in X", so we are looking an(3 2 This lives in the alcove A°
(labelled 1 in figure 3). Consider some alcoBe(say), and the simple module in i,
orbit of (3, 2) which lives in alcoveB. This appears m; 3 If the alcove labelled 1 in
figure 3 appears in the pattern associated to ald@we f|gure 4. In other words, thinking
of the patterns as tiles to be placed (full sized) on the alcove diagtgrappears inA(;
if the pattern foryu overlays a region including alcove 1. Reading off from figure 4, the
tiles which do this are those shown on the right in figure 6. The corresponding weights are

3,2),5,0,(6,0, (7,1, 4,49, (12 2),(9,5), (8,6), (11, 6), (9, 8), (11, 9).

Thus, there will be level crossings between eigenvalues if3h®) sector and all the other
sectors shown in this list for large= 5(mod 3, and in the thermodynamic limit. In order
to recover specific finite-size data from this we simply use the ‘localization’ functor of [50]
(cf [48]). Those weights above not killed by localization specifically:te- 8 are those on

or below the 8-horizon, i.e.

B3,2~4,3,1,50~(6,1,1),6,0,(7,1), 44

and thus we recover the result in [50] (and, adjustincall other finite results besides).
Similarly from the left picture in figure 6, the only simples converging with the sector
containing the normal ground state= (0) [51], are

0).(4,2),(9,(9.9, (12 6).

(This is true even in the limit of large.)
We now turn to the general statement and proof of these results.
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* o o+ B2

v/

Figure 6. Alcove patterns which include the alcove= A° (left picture) andA = sA° (right
picture). The location of the alcové on each pattern is indicated in grey. The broken line is
an n-horizon.

3.4. Summary of Hecke algebra theory

Recall from [50] that thej-symmetrizerYy may be used to construct functors which embed
HY-mod in H, ,-mod (via the algebra isomorphism

N
YN Hn+N

Yy = HY
which is valid forg[N]! # 0—a restriction we henceforward assume to be satisfied). This

embeds the tower
- CHN CHN )y CHYoy C-

in alarge n limit algebra. Note that there is a tower for each conjugacy clagsnodd N,
and the union of their respective limits is calléff¥. This ‘global’ algebra (cf [48]) has
simple modules indexed b¥* (as the natural limit of the&("s). In the limit both induction
and restriction viaH, c H), become functors orf"-mod to itself, which we will
denote Ind and Res, respectively. Foa weight let j.] € C denote the representative of
the affine Weyl orbit ofs. in C. Let Pr, denote the projection ta//*! in the Hecke version
of equation (7). Define composite functat$ := Pr, Ind Pr, and R}’ := Pr, Res Py.

From [50] we find these functors preserve the property of standard filtrations. In
particular the usual induction/restriction rules for symmetric groups [31] tell us that for
each sectiom\), in M € F(A’) we have sections

Ao A A ©)

in Ind M, whereu + ¢; corresponds to adding a box to tith row of the Young diagram of
the weightu, and the list runs over all cases where this produces another dominant weight
(cf figure 1; there, starting fromx = (0, 0), u + ¢; is only dominant fori = 1; while for
uw = (2,1), say,u + ¢; is dominant for each of = 1, 2, 3). The restriction Re& has
sectionsA),_, similarly. We can think of the geometric structure on the set of (dominant)
weights as being induced from these rules.

These functors also preserve projectivity. Thus, noting from [50] Bjat Aj, we can

gain information on the structure of projectives by working inductively on the dominance

/ /
Hter? e "t
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order. In particular, for an illustration, let us verify in the cage= 3 that
(P ADa =1 and(P; : A;)A/ # 0 impliesp =1 or u < A. 9)

Suppose we apply Ind to son® for which, and forP;, below which, this is true. Then
the image is a sum of indecomposable projectives includiig, in particular (and note
A+e1>2). Indeedi < j impliesi +¢; > A+ ¢;, so the big sum in

grep=pr,, o@PP, (10)
"

can only contain projectives which are lower in order tha# ¢;. Every weight may be
reached in this way, or by restriction, for which a similar argument applies.

3.5. Characters

Let us define a functioly which assigns to each standard filtered modula list of natural
numbers, one for each dominant weightgiven by (M : A} ). For examplex (A;) is

a list of almost all zeros, but wita 1 in thei position. We cally (M) the (standard)
character of M. The character of a projective is called a projective character (note that
x (M) projective does not implW projective).

Since we know theA’-content of IndP;, from equation (8) the only problem in
determining the content oP,,, is to determine, in cases where thé-content of IndP;
containsthe A’-content of IndP;, (somew), whether this is just part of the content 8f , ,
or in fact a separat®, summand.

For example, consider a dominant weighlying on a dimension 0 facet. The Jantzen
sum formula [34] together with duality (or the Nakayama conjecture [35]) tells us that
P, = A’,. Applying Ind once we learn that for ajl

N
(Pyioy i ) <Y (AL, 1 A)) (11)
i=1

N
X(Pl:Jrel) < Z X (A:)+g’-)'
i=1

We will call an upper bound on the content Bf,,., obtained in this way aenvelopeof
P,..,. Applying Ind again we naively have

N
K(Pype) < D0 XAy (12)

ij=1

However, all butN of the summands are in a different affine Weyl orbivte 2¢,, so (for
[ large enough) we deduce

N
X(Plioe) < Y X (Nyua,). (13)
i=1
Inducing again from this, and suitably projecting, we reach
N
X(Plj+2€1+€2) < Z X(A;+2€;+e,v)' (14)
i,j=1

@#))
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Figure 7. Moving from left to right, the first step is induction from a dimension zero facet to
a wall; then translation along the wall by induction and projection; then translation off the wall
into an alcove by induction and projection. The case illustrated is 3,/ = 4.

wherev + 2¢; + e; lies on a dimension two facet. This process iterates in an obvious way
until, at the Nth iteration, we deduce an envelope for a projective associated to a weight in
an alcove which is a translation af°. Note that this envelope contaimg! sections (one

in each of N! alcoves). The cas&/ = 3 is illustrated in figure 7.

In fact, as we will see shortly, this envelope gives the content of the corresponding
projective exactly (and hence all those deduced before it are exact—and thus, indeed, for
N = 3 they are among the patterns appearing in figures 4 and 5). This is a good illustration
of the utility of the technique; however, it is not enough to deterniineln general, what
we need is a systematic way to tell when a lower projective must be subtracted from the
envelope.

One illuminating way to try to do this is to note that we can work in any fifi{é(q)
large enough to contain all the possible weights. There, for each indecomposable projective
P, there is a (not necessarily unique) primitive idempotentsuch thatP, = HNe;,
and Indp, = Hn"ﬁrle,\ (e;. is the image inHY of a corresponding primitive idempotent in
H,). The question is ife, can be decomposed iH,f‘il. Generically it can, and there
are constructions for the components (see e.g. [32]), but these components need not be
well defined in every specialization @f. For example, the unique primitive idempotent
e1r=Y1 € HY is 1. In HY(N > 1,1 # 2) this decomposes as

-1 + N=2
q 81, 9+8 _ :eo ) (15)

a=l="""*"g e +ea N >2
(we have takery; = ¢~ — U;, [2] = ¢ + ¢~1, and adopted the conventiegyy, = Yy, cf
[50]). Obviously this decomposition is not available if [2]0. In general, if the idempotent
decomposes we say IRj splits If it does not split the induced character is the character for
the new (higher) indecomposable projecti&_.,, say); if it does split the new character is
the induced character less the lower character(s) which split off. The ‘degree of divergence’
as the generic idempotent is specialized to a giyeran, in principle, be computed (cf the
‘big diamond’ idea of [45], and see section 4), but luckily faf = O there is a quicker
way! We will discuss this shortly.

Continuing to iterate as below equation (14) we may deduce envelopes for projectives
with weights in translates of any of the Weyl group reflectionsA8f Now suppose that
all the projectives in a neighbourhood belawcoincided with their envelopes obtained
in this way. It is straightforward to check that none of the projective envelopes we have
generated contain complete copies of any of the lower ones. We may thus deduce that all
our projectives coincide with their envelopes.

We will see that the supposition is correct for all but a few weights outside the ‘forward
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light cone’ ofv = (21 —1)p (cf [42]). Thus this procedure determines almost all projectives,
leaving only those in a neighbourhood of the boundary of the dominant region open to
guestion.

In the casesV = 2, 3 there is enough colateral information available to deduce the
complete structure. We next discuss these cases. Then in section 5 we apply Soergel’s
recent work [58], which, in principle, determines all the projective subtractionsffet 0.

3.6. The cas&y =2

The caseN = 2 is the Temperley-Lieb algebra. This is well understood [46], and serves
here to illuminate the notation. In this case the dominant region corresponds to the half-
line, and dominant weights are the non-negative integers (corresponding, at fiteethe
overhang of the top row of the Young diagram over the second row). Reflection hyperplanes
are the points—1,2/ —1, ..., and the alcoves are simply the segments of the line bounded
by these points.

For everyN (and! > N) we have

Py = Ay, (16)
Inducing equation (16) in the cageé = 2 we getP; = A/, then
x(Py) < x(Ind P)) = x(AY) + x(Ap).

The idempotent which splits these sections in the generic case -at2 is still well
defined at/ > 2 (indeed it is as in equation (15)), sB; = A,. We may iterate
similarly up the fundamental alcove until we reagliP)) < x(A)) + x(Aj_,). By a
direct calculation of idempotents [46] these sections do not split, so the bound is saturated.
By the same calculatiorP,, , = A}, , = L,, , for positive m, so x(P,;,_1,;) <
XA i) + x(A, )k < 1), and again we find that the bound is saturated (for
m > 1 this is by induction onn, since thenA’ , , . is not projective).

We have determined that the non-singleton blockd cf 2 are indexed by the dominant
weights in the fundamental alcove, and that each such block gives a direct sunfirtend
of D (from equation (5)):

11
1 2
DD =|0 1

PN

1
21

with the ith row/column corresponding to the weight obtained by a sequence -efl)
affine reflections starting from the defining weight

3.7. The cas&V =3

For the caseVv = 3 it is useful first to note that the correspondiNg= 2 case appears as a
quotient for each fixea (i.e. on then-horizon). Note in particular that the affine reflection
lines perpendicular to this line intersect it at tNe= 2 reflection points. This means that
the standard module content of an indecomposable projective on-tizgizon must be
consistent with its (indecomposable projective) image in the quotient. Standard modules on
the n-horizon are taken to (identical) standard modules in the quotient [50].

Note also that duality tells us that the global algebra has a symmetry corresponding to
the usual* involution on theU, (sly) side (cf [31, p 311]).
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The rest of the argument is an induction on the dominance order, starting from a number
of explicit base cases.
Starting again from equation (16) we gé&;, = Aj;, then Pj < IndP; =
Al + A(l 1+ Again this splits by a direct calculation (of the= 2g-symmetrizer), so
P = Alp and P(j 3y = Ay 4y, and so on.
The flrst non-split cases are of the type

X(P(/zfl,l)) = X(A/(zfg)) + X(A/(lfl,l)) (17)
and

X(P(/l)) = X(AQ[)) + X(Azlfl,l)) (18)

(the reader is invited to mark the appropriate weights in figure 3). These cases cannot split
for the following reason. First, note by induction and linkage that the right-hand sides shown
are upper bounds. It is well known that the standard modyjje, is not irreducible in
general (this is of the essence of the restricted ABF models [6]) and in particular=tdr
Thus in this case the weight must be linkedstmmething But the only possibility (noting
equation (18) as an upper bound)A$_, ;). This shows that equation (17) does not split,
which verifies that equation (18) cannot split either, since there is no projective summand
(this is also signalled by the readily computed divergence ofnthe [ g-symmetrizer, or
by inspectingV = 2 data on the relevami-horizon).

Note that all (non-vanishing) indecomposable projectives with weights within the same
facet have category equivalent standard sections. Suppose without loss of generality that
the sections of?; are{A!;|w € S cWh Iif ue FOO) adjacent tan it is always possible

to choosel;’ so that/’A; = A (in which caseR, A’ = A}) or Rj'A} = A/, ( and
IXA), = A}), whereuponw € W; implies I,'A!, = AW, so the sections of, are
{A,lw e S}

The next facet to consider iBy_5. Inducing P2, _3 and applying linkage the only
possible sections ar&(, _, andA(;_;, ;. From theN = 2 quotient we find

X(Po_p) = X (Ag_p) + X (Al_1-1)- (19)

Inducing again we have
(Pl_gy  A)a < (1(2211 zl))P(zz 2 A= (Al gy P ADa + (Ao 0 Ao (20)
X(P(21 11)) X(A(zl 1, 1)) + X(A/(zl 3)) + X(A(z 10— 2)) + X(A(l 1)) (21)

(the reader is invited to mark the relevant weights on figure 3). The first of these bounds is
saturated, for, supposing‘zzf_’zl))P(/ZI_z) splits we would haveA(, ; projective, but then

Rgll f))A/ZI 1 = Aly_p Would be projective—a contradiction. The second bound is
saturated since any possible splitting would remave ,, ,, giving a contradiction on
restriction toPp,_,,.

At this point it is worth noting how the calculations so far appear in the context of the
complete result, as given in the form of figures 4 and 5. For example, the four terms on the
right-hand side of equation (21) correspond to the pattern in#ha® alcove in figure 4.

To conclude the calculations we need one more technical device for idempotent splitting.

4. On generalized characters and idempotent splitting

Let{o;=(Gi+1]i =12,...,n— 1} be the Coxeter generators §f as before. Recall
that thelength of a permutationw, written lenw), is the number of generators in a reduced
expression forw. Let wg be the unique longespb in S,. Let T,, € H, be obtained by
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writing w reduced and replacing eaehby g; = ¢! — U; (note that this procedure is well
defined).

With g; = ¢~ — U; (note a simple change of variables cf [50]) #pe¥oung operators
are given by

1 - w
= — Z qlen(wo) len( )Tw (22)
[}’l] wes,
-1
X” — [n]' Z(_q—l)len(wo)—len(w)Tw (23)
" wes,

where b] = ¢" ™ +¢" 2+ -+ ¢*™" = L= Obviously{T,|w € S,} is a basis of,
so these operators are not well defined in specializationsg iof which [I]] = 0 for some
I < n (i.e. g a 2th root of unity in these variables).
However, the operators are not necessarily badly defined in specializations of quotient
algebras, in the sense that badly defined parts be killed by the quotienting. For example,

writing Yo = 1 — % we have

0 — HyU;H, — Hy — Hy — 0

24
Ygl—)l ( )

so Y, is well defined inH3, even when [2}= 0.

This observation leads (at least for projective modules) to a notion of generalized
charactersy (M), with entries inZ[v], such thaty'(M) = x(M). (We know of no direct
physical use for the extra information, but knowing the generalized character of an induced
module helps us extract the indecomposable projective characters)e; lbet a generic
primitive idempotent as before (note thatis not specified uniquely by in general). If it
is well defined at then x;(P) = §,,. If it is divergent we can characterize its divergence
as follows. First, we return to the generic setting (indeed, gg te 1), and examine the
spin chain representation. Write

vt =@pc. (25)
"

for the decomposition ofv¥" by ‘N-colour charge’ conservation in the usual way.
Obviously the permutation modul€, is a direct sum of tilting modules, and thus has
a A'filtration. There are quotient&, of HY which will kill all C,s with 1 ¥ p. The
matrix elements ofC, (e;) are rational numbers which may or may not be well defined in
characteristid (with an equivalent ‘quantum’ statement).

In the case ok, (which is uniquely defined) we can easily be completely specific.
For example, leth, be thed x d matrix with all entries 1, then

1 1
Cio00(em) = &l ZS: Cio0(w) = §D1 =1 (26)
wWeEds
1 0 0O 1 0 0O
1 01 0 00O 01 0 0O 41
Cu10(es) = 5 0 01 0 Ol]+10 O 1 0 O+ = 5—;D5 (27)
: 0 0010 0 0 001 ’
0 0 0O 0 0 010
312!
Ca20/(em) = FD% (28)

3!
Carplem) = g Dy (29)
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212!
Ceponles) = ?D% (30)

Putd, = dim(C,) = HH_;L' The general result is

1
Culemy) = —Dy (31)

d, ™
These results follow from elementary representation theory considerations. The situation is
considerably more complicated for gene¢al but we will not need it here.

In our n = 5 case the dominance order totally orders the weights. We see #hé
well defined inH>%Y = HE for anyl. In B it is well defined unlesg = 5 (note
that the denominator cannot be removed by base change, since, more generally, the HCF of
a matrix’s elements is invariant under unimodular transformation). We deducehét
not well defined at = 5, and that the nature of the divergence is such that some choice of
idempotente4 1) must be added to make an idempotent wiieln be specialized té = 5
(we knew this already, but now we have a well defined degree of divergence, i.e. the power
of 5 in the denominator when equation (27) is expressed in reduced form). Note that since
the degree of divergence At= 5 is the same in each subsequent quotient, then if further
idempotents needed to be added (in this case they do not) their degree would be no higher
than 1. InH3%*% = H2 the idempotents, is then well defined unlegs= 4, so for! = 4
somee s 2 must be added, and so on.

Now recall thaty (P,) records whiche,s must be added te, to make a well defined
idempotent at. In x?(P,) we simply record the degree of divergence of each addition,
i.e. (in our case) the power dfin the denominator when equation (31) is expressed in
reduced form. With the machinery we have described so far, we can note the |a¢gest
where V1 first appears, the largest wherg/d appears, and so on (care must be taken when
interpreting for the quantum case whenot prime—obviously [2][2] does not have all the
roots of [4], for example).

Note that forN = 2, 3 the polynomialsy’(P,) are all monomials with coefficient 1
(or 0). An illuminating example occurs at= (12). Here we havei(‘lé) =1, d<_111,1) = 1i2
diey = 2/(1211),....d75, = 713121/12\, ... d; %, , = 414141/121. Considering = 4
(figure 8) we pick out(11, 1) at degree (7, 3, 2) at degree 2. Noting8, 4) at degree 0
and (8, 3, 1) at degree 1 we arrive at the result in figure 4, where the appropriate subset of
these degrees are shown in the patternifer (12) given in the key on the right. Indeed,
with a couple of similar examples this concludes the base ofMhe 3 calculation, which
then concludes as in section 3.5. Furthermore, we can infer, in general, that the degrees of
divergence do not grow unboundedly withas naively suggested by equation (22) or (23),
but are rather limited byv.

5. General N results

We want to associate to every facet4f, or more precisely to a representative weiglin

every facet (and hence via equivalence translatifis-see equation (34)—to every simple
module index) a map encoding the standard module content of the correspaidiitting
module, or equivalently the standard content of e&th projective. By the reciprocity

of equation (6) this will also lead us to the simple content of the standard Hecke algebra
modules. We will do this explicitly for alcoves and walls, with the other facets following
by suitable induction/restriction (or translation—see appendix A). We work iteratively on
the Bruhat order ford™ and Af.
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Figure 8. Some A, weights in the 4-affine Weyl group orbit of = (12). Note theN = 3
equivalences8, 3, 1) ~ (7, 2) and so on.

For eachA € A™ pick a Bruhat increasing path to it frost® via the right action (such
a path is not unique, and in fact we only choose one for definiteness). We now compute
for eachA € A a map

na: A— Z[v]
and for eachw € A
ny P AT — Z[v]
such that
na(A) =1andn,(B) #0 impliesB=AorB < A (32)

(note thatn 40 is defined uniquely by this).
We start withn 40 and work up the order as follows. Fdrs > A

N, (a) - AT — Z[v]
is given by
na(B) + v lns(Bs) Bs > B
v A (B) + na(Bs) Bs < B
ny @) =0 w ¢ [s]

(note that this is not obviously well defined, but in fact everyB) not divisible byv is
‘projected up’ bywy); and then finally

”;,A(A)(ws(B)) =

Ny, (A) = n:ul(A) - Z n;Us(A)(w)lv:Onw‘

w<w;s(A)
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Now given
Ny, (a) - AT — Z[v]
with As > A put

Ny, 4) (Ws (B)) B > Bs

nas(B) = { Uy, (4) (s (B)) B < Bs.

Note that these polynomials are well defined, independent of the path (by a braiding
argument) and crucially, the key result is that

(T)\ : AM) = nF-A(F,u)lvzl

whenever the right-hand side is well defined (Soergel [58] provesitheart of this result;
see also [9, 25, 38]; the remainder follows from properties of the translation functor [34]).

The cases of Coxeter systerds, A, should be compared with sections 3.6 and 3.7
(see also Lusztig [42]). In fact, tha, example is again illustrated by figures 4 and 5.
The figures are now to be interpreted as follows. There are three types of facet: faces,
edges and points. The procedure above only gives the face and edge data, but recall that
all the tilting modules corresponding fmwints on the alcove diagram hemincide with
the standard modules with the same label (.8.A) = 1 and all othern4(B) = 0; see e.g.
Jantzen [34, ch 8]. Thus we need only encode the set of polynomjais) for each class
A of edge and face. Fixing\, there is a polynomial for each,(B), B an edge or face,
respectively. In each case df it turns out that almost all the polynomials are zero (of
course this if forced by equation (32), but the number of non-zero entries is actually much
smaller than this constraint requires). If we look at the pattern of non-zero polynomials for
given A we find that (up to translation of the pattern bodily around the picture) there are
only a small number of distinct patterns. Indeed, up to this translation even the details of
the non-zero polynomials are fixed in a given pattern. Thus we can give all the polynomials
by simply describing which generic pattern type is associated to aad®trictly speaking
we also need to know the bodily position of the given pattern in the picture, but that is fixed
by the position of the ‘head’ of the pattern, the polynomig{A) = 1 (by equation (32) the
unique highest alcove in the pattern), at positionNote that there is only one polynomial
‘1’ in each pattern.

In the figures, the generic pattern types are shown by the templates on the right. Each
non-zero polynomial is of the form,(B) = v* (this is generally true fov = 2, 3 only);
andx is given by the number in the template. Thus, for example, the head of each pattern
is marked 0, fon®. The shapes in the alcove diagram itself indicate which template applies
for each alcove/wall (if only part of a generic pattern is shown then the generic polynomials
are replaced by zero in the omitted alcoves). For example, from figurg4,A% = v.

Results for higherV are easy to compute but, due to the higher-dimensional alcove
diagrams, harder to present (consider figure 2!). We will deal with the analysis of these
results elsewhere.

To finish, let us reiterate in short. Even without using the full polynomial data, figures 4
and 5 yield all composition multiplicities fa, (s/3), and hence all corresponding spectrum
multiplicities for the Hamiltoniang¢3°. Two complementary methods have been given for
determining these. The method for determining the multiplicities for arbithris also
given. We note for completeness that the full polynomial data gives information about the
position of filtration factors in the corresponding filtrations (cf Jantzen [34,ch 8; [4, 49]),
i.e. where appropriate, the Loewy layer [50]. However, this extra data does not of itself
seem to be physically interesting.
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While Soergel's approach [58] to the procedure discussed here uses and is restricted
to algebraic Lie theory, the method in sections 3 and 4 does not have this restriction in
principle (see [49]). In particular, it should be possible to generalize to the algebras of the
reflection equation [8]. We will look at this problem elsewhere.
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Appendix. Representation theory generalities

To introduce tilting modules [28] we can proceed eithergagroups [13] orquasi-hereditary
algebras [22]. In the diagram in equation (4)(slx) is theg-group (a Hopf algebra) while
the finite-dimensional quotients, (n, N) are quasi-hereditary. Since the construction of the
g-group is relatively complicated we will here follow the way of quasi-heredity. Recall,
however, that the namggroup derives justification partly from the appearanceg-gfoups
as the ‘symmetry groups’ of-site g-spin chains [54] in the sense that chains are invariant
under an action of the-group. For any givem this is not a faithful action, i.e. the
invariance is fully realized by the action of sorfieite quotient algebra, which is not itself
a Hopf algebra. These quotiens§(n, N) have nice properties both inherited from the
g-group and due to finiteness [27]. We study these quotients.

An idempotente in a finite-dimensional algebra over C is a heredity idempotent
if eAe is semi-simple and the multiplication mage ®.4. ¢eA — AeA is a bijection. A
heredity chain forA is a list(eg, e1, . . ., e,) of idempotents such that = AegA D Ae1A D
.-+ D Ae,A ande; is a heredity idempotent modulde; ,1A. An algebra with heredity
chain is called quasi-hereditary [22]. Any heredity chain can be refined so thateaat a
primitive image inA; := A/Ae; 1A, whereupon the chain is said to be maximal (of length
Mmax, SaY).

Let A be quasi-hereditary with maximal heredity chain. Then defta@dard modules
by restriction along the natural projection framto A;

A; :=Res/ (A;e).
Let the set of these be\. Dually there arecostandard modulesV; € V given by
Vv, = (Resz’ (e;A;))*. The headd.; = Head A;) are a complete set of inequivalent simgle
modules. The sef(A) N F(V) is the set ottilting modulesof A.
Now let X’ be a fixed index set of inequivalent simple modules (&6 <«
{1,2,...,mmax). Let > be the partial order oX’ defined by
A>pw) =L =L,,L; =L, =i> jfor every maximal chain of).

It is a theorem of Ringel [57] that the set of equivalence classes of indecomposable tilting
modules may be indexed hy’, and that representativE, (say) may be characterized by
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(T; : Ay) =1 and(T;, : Ay) =0 for u £ A. A ‘full’ tilting module is one containing a
direct sum of at least one of ea@h(A € X').

Using the ideas of Donkin [28] one can also define tilting modulesyfgroups, with
the role of A played by the set of Weyl modules. In this setting one can, in principle, give
a construction of the indecomposable tilting modules via tensor products, using Donkin's
result that7,, and 7}, tilting implies T, ® T}, tilting. For example,VS’" is tilting for U, (siy),
sinceVy is trivially so. The quotient algebrs, (n, N) is quasi-hereditary [62], andy" is
tilting as aS,(n, N)-module. By an organizational argumevif” is a full tilting module
in S;(n, N) provided! > N.

If A is a quasi-hereditary algebra afida (left) full tilting module then the algebra
A’ = Endy(T) is called the Ringel dual ofA with respect toT. It can be shown that
this dual is quasi-hereditary. Note thAtis a left A right A’-module, so that the functor
F = Homy (T, —) takes

F : A-mod— A’-mod.

In particular, F' takes injective modules to tilting modules. Consideiitself as a right
A-module, then

A =PI
A
is a sum of left injective modules. Thds := F(A%) is full tilting. We have
T' = Homu(T, A}) = Homu (A, T*) =T*

an isomorphism of leftA’-modules, thus finallydA” has (right) full tilting moduleT. The
heredity order> is reversed inA’.

From the above discussioH" (¢) is quasi-hereditary (providetl > N), being the
Ringel dual of S,(n, N) with respect toV". The connection between the algebras is
provided by the Ringel functor

F:S,(n, N)-mod — H} (g)-mod
F(M) = Homsq(n’N)(ng, M).

This takes costandards to standards and preserves exactnasfiltefed sequences. In
particular, {P; = F(T;)|» € X"} defines a complete set of inequivalent indecomposable
projective modules off" (¢). This labelling of the modules coincides with that in [50].

Let Pr, : U-mod — M, be the projection functor corresponding to equation (7). Then
for A, u € C thetranslation functor[34] 7 : U-mod — M, is defined by

T'M = Pr,(L((n — M) & P, M) (34)

where (u — A)T is the dominant conjugate @f — A. Translation involving indiceg:, A

in the same facet is a category equivalent [34], so in examining the structure of standard
modules we may restrict attention to one representative weight in each facet, with all the
other data being straightforwardly recoverable from these.

(33)
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